Search results for "Microlocal analysis"
showing 9 items of 9 documents
Existence of fixed points for the sum of two operators
2010
The purpose of this paper is to study the existence of fixed points for the sum of two nonlinear operators in the framework of real Banach spaces. Later on, we give some examples of applications of this type of results (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Pseudodifferential operators of Beurling type and the wave front set
2008
AbstractWe investigate the action of pseudodifferential operators of Beurling type on the wave front sets. More precisely, we show that these operators are microlocal, that is, preserve or reduce wave front sets. Some consequences on micro-hypoellipticity are derived.
Determining a Random Schrödinger Operator : Both Potential and Source are Random
2020
We study an inverse scattering problem associated with a Schr\"odinger system where both the potential and source terms are random and unknown. The well-posedness of the forward scattering problem is first established in a proper sense. We then derive two unique recovery results in determining the rough strengths of the random source and the random potential, by using the corresponding far-field data. The first recovery result shows that a single realization of the passive scattering measurements uniquely recovers the rough strength of the random source. The second one shows that, by a single realization of the backscattering data, the rough strength of the random potential can be recovered…
Applications of Microlocal Analysis in Inverse Problems
2020
This note reviews certain classical applications of microlocal analysis in inverse problems. The text is based on lecture notes for a postgraduate level minicourse on applications of microlocal analysis in inverse problems, given in Helsinki and Shanghai in June 2019.
Analytic Bergman operators in the semiclassical limit
2018
Transposing the Berezin quantization into the setting of analytic microlocal analysis, we construct approximate semiclassical Bergman projections on weighted $L^2$ spaces with analytic weights, and show that their kernel functions admit an asymptotic expansion in the class of analytic symbols. As a corollary, we obtain new estimates for asymptotic expansions of the Bergman kernel on $\mathbb{C}^n$ and for high powers of ample holomorphic line bundles over compact complex manifolds.
Numerical Recovery of Source Singularities via the Radiative Transfer Equation with Partial Data
2013
The inverse source problem for the radiative transfer equation is considered, with partial data. Here we demonstrate numerical computation of the normal operator $X_{V}^{*}X_{V}$ where $X_{V}$ is the partial data solution operator to the radiative transfer equation. The numerical scheme is based in part on a forward solver designed by F. Monard and G. Bal. We will see that one can detect quite well the visible singularities of an internal optical source $f$ for generic anisotropic $k$ and $\sigma$, with or without noise added to the accessible data $X_{V}f$. In particular, we use a truncated Neumann series to estimate $X_{V}$ and $X_{V}^{*}$, which provides a good approximation of $X_{V}^{*…
Reflection and Refraction of Singularities for Wave Equations with Interface Conditions given by Fourier Integral Operators
1992
Cauchy problems for hyperbolic operators often have the property, that the singularities of the initial data propagate along the bicharacteristic strips of the operator (cf. e.g. [13]). We consider, in the linear case, the situation where the bicharacteristics hit transversally a spacelike interface, which is ‘active’ in the sense that the interface condition is given via certain Fourier integral operators. Taking the identity, we obtain classical transmission conditions. A suitable functional analytic setting is furnished by the interaction concept [3], [6], [7], which covers very general mutual influences of evolution phenomena on different domains.
Fourier integral operators and inhomogeneous Gevrey classes
1988
Fourier integral operators with inhomogeneous amplitude and phase junction are studied in the frame of Gevrey classes. Applications are given to propagation of singularities for a pseudodifferential equation.
Two Minicourses on Analytic Microlocal Analysis
2018
These notes correspond roughly to the two minicourses prepared by the authors for the workshop on Analytic Microlocal Analysis, held at Northwestern University in May 2013. The first part of the text gives an elementary introduction to some global aspects of the theory of metaplectic FBI transforms, while the second part develops the general techniques of the analytic microlocal analysis in exponentially weighted spaces of holomorphic functions.